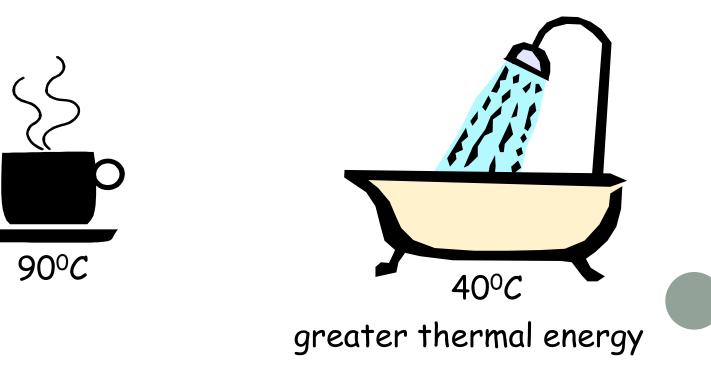


THERMOCHEMISTRY

Energy is the capacity to do work

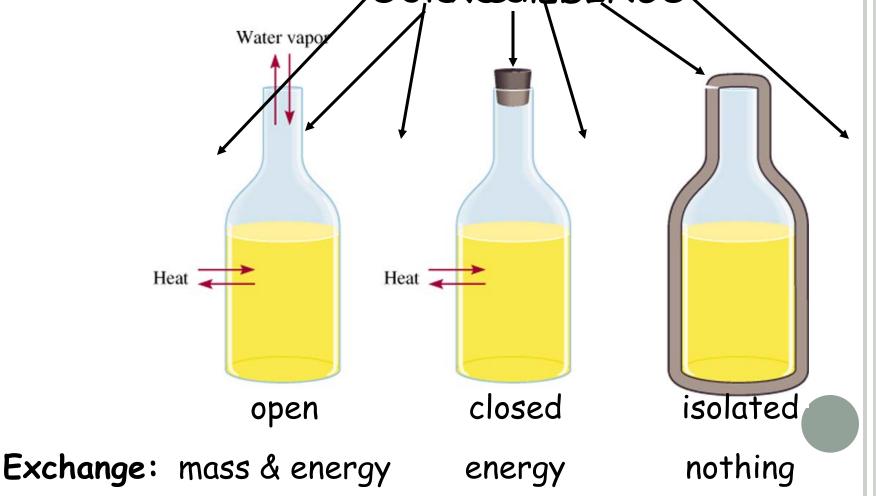
- Thermal energy is the energy associated with the random motion of atoms and molecules
- Chemical energy is the energy stored within the bonds of chemical substances
 - **Nuclear energy** is the energy stored within the collection of neutrons and protons in the atom
- Electrical energy is the energy associated with the flow of electrons
- Potential energy is the energy available by virtue of an object's position



Energy Changes in Chemical Reactions

Heat is the transfer of **thermal energy** between two bodies that are at different temperatures.

Temperature is a measure of the thermal energy.


Temperature *≠* Thermal Energy

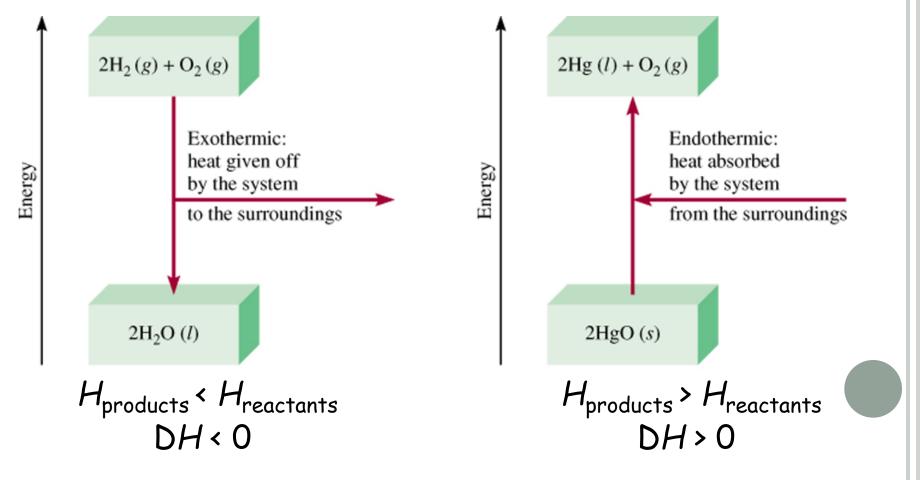
Thermochemistry is the study of heat change in chemical reactions.

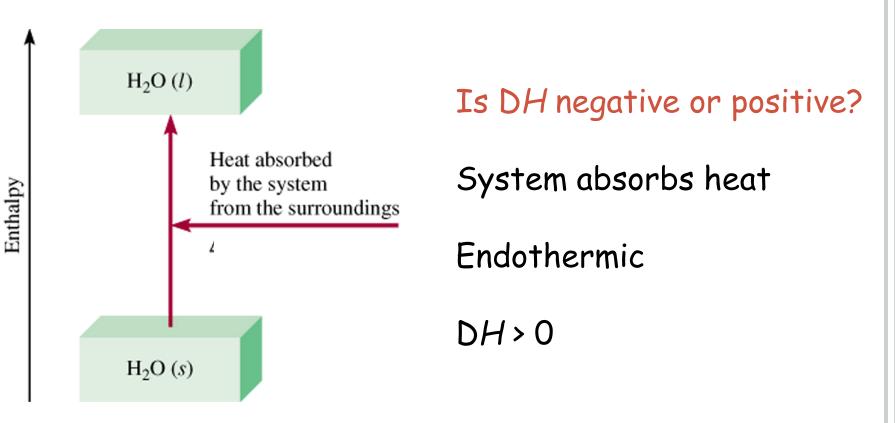
The system is the specific part of the universe that is of interest in the study.

Exothermic process is any process that gives off heat transfers thermal energy from the system to the surroundings.

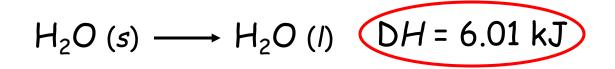
$$2H_2(g) + O_2(g) \longrightarrow 2H_2O(l) + energy$$
$$H_2O(g) \longrightarrow H_2O(l) + energy$$

Endothermic process is any process in which heat has to be supplied to the system from the surroundings.


energy + 2HgO (s)
$$\longrightarrow$$
 2Hg (l) + O_2 (g)


energy +
$$H_2O(s) \longrightarrow H_2O(l)$$

Enthalpy (H) is used to quantify the heat flow into or out of a system in a process that occurs at constant pressure.


DH = H (products) - H (reactants)


DH = heat given off or absorbed during a reaction **at constant pressure**

6.01 kJ are absorbed for every 1 mole of ice that melts at $0^{\circ}C$ and 1 atm.

890.4 kJ are released for every 1 mole of methane that is combusted at 25°C and 1 atm.

 $CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(I) \quad \Delta H = -890.4 \text{ kJ}$

 The stoichiometric coefficients always refer to the number of moles of a substance

 $H_2O(s) \longrightarrow H_2O(l)$ DH = 6.01 kJ

If you reverse a reaction, the sign of DH changes

 $H_2O(I) \longrightarrow H_2O(s)$ DH = -6.01 kJ

 If you multiply both sides of the equation by a factor n, then DH must change by the same factor n.

 $2H_2O(s) \longrightarrow 2H_2O(l) \quad DH = 2 \times 6.01 = 12.0 \text{ kJ}$

The physical states of all reactants and products must be specified in thermochemical equations.

$$H_2O(s) \longrightarrow H_2O(l) \quad DH = 6.01 \text{ kJ}$$
$$H_2O(l) \longrightarrow H_2O(g) \quad DH = 44.0 \text{ kJ}$$

How much heat is evolved when 266 g of white phosphorus (P_4) burn in air?

 $P_4(s) + 5O_2(g) \longrightarrow P_4O_{10}(s) \quad DH = -3013 \text{ kJ}$

$$266 g P_4 \times \frac{1 \text{ mol} P_4}{123.9 g P_4} \times \frac{3013 \text{ kJ}}{1 \text{ mol} P_4} = 6470 \text{ kJ}$$

The specific heat (s) of a substance is the amount of heat (q) required to raise the temperature of one gram of the substance by one degree Celsius.

The heat capacity (C) of a substance is the amount of heat (q) required to raise the temperature of a given quantity (m) of the substance by one degree Celsius.

Table 6.1 The Specific Heats of Some Common Substances		C = ms	
Substance	Specific heat (J/g · °C)	Heat (q) absorbed or released:	
	0.900	q = msDt	
	0.129	•	
raphite)	0.720	q = CDt	
diamond)	0.502	1	
L	0.385	$Dt = t_{final} - t_{initial}$	
	0.444	CC - Cfinal - Cinitial	
	0.139		
	4.184		
₅OH (ethanol)	2.46		

Because there is no way to measure the absolute value of the enthalpy of a substance, must I measure the enthalpy change for every reaction of interest?

Establish an arbitrary scale with the standard enthalpy of formation (DH $_{\rm f}^{\rm 0}$) as a reference point for all enthalpy expressions.

Standard enthalpy of formation (DH⁰) is the heat change that results when one mole of a compound is formed from its elements at a pressure of 1 atm.

The standard enthalpy of formation of any element in its most stable form is zero.

$$DH_{f}^{0}(O_{2}) = 0$$
 $DH_{f}^{0}(C, graphite) = 0$

 $DH_{f}^{0}(O_{3}) = 142 \text{ kJ/mol}$ $DH_{f}^{0}(C, \text{diamond}) = 1.90 \text{ kJ/mol}$

The standard enthalpy of reaction (DH_{rxn}^{0}) is the enthalpy of a reaction carried out at 1 atm.

$$aA + bB \longrightarrow cC + dD$$

 $DH_{r\times n}^{0} = [cDH_{f}^{0}(C) + dDH_{f}^{0}(D)] - [aDH_{f}^{0}(A) + bDH_{f}^{0}(B)]$

 $DH_{rxn}^{0} = SnDH_{f}^{0}$ (products) $SmDH_{f}^{0}$ (reactants)

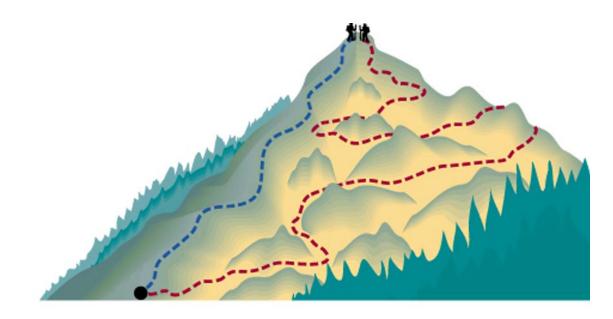
Hess's Law: When reactants are converted to products, the change in enthalpy is the same whether the reaction takes place in one step or in a series of steps.

(Enthalpy is a state function. It doesn't matter how you get there, only where you start and end.)

The enthalpy of solution (DH_{soln}) is the heat generated or absorbed when a certain amount of solute dissolves in a certain amount of solvent.

Table 6.4Heats ofSolution of SomeIonic Compounds

ΔH _{soln} (kJ/mol)	
-37.1	exothermic
-82.8∫	exothermic
4.0	
17.2	endothermic
	endothermic
26.2	
	-37.1) -82.8∫


Which substance(s) could be used for melting ice?

Which substance(s) could be used for a cold pack?

Thermodynamics

State functions are properties that are determined by the state of the system, regardless of how that condition was achieved.

energy, pressure, volume, temperature

Potential energy of hiker 1 and hiker 2 is the same even though they took different paths.

Thermodynamics

DE = q + w

DE is the change in internal energy of a system

q is the heat exchange between the system and the surroundings

w is the work done on (or by) the system
w = -PDV when a gas expands against a constant external

pressure

Table 6.5 Sign Conventions for Work and Heat

Process	Sign
Work done by the system on the surroundings	-
Work done on the system by the surroundings	+
Heat absorbed by the system from the surroundings (endothermic process)	+
Heat absorbed by the surroundings from the system (exothermic process)	-