Periodic table of elements

Periodic Table

- The periodic table organizes the elements in a particular way. A great deal of information about an element can be gathered from its position in the period table.
- For example, you can predict with reasonably good accuracy the physical and chemical properties of the element. You can also predict what other elements a particular element will react with chemically.
- Understanding the organization and plan of the periodic table will help you obtain basic information about each of the 118 known elements.

<u>Dmitri Mendeleev</u> (1869)

In 1869 Mendeleev and Lothar Meyer (Germany) published nearly identical classification schemes for elements known to date. The periodic table is based on the similarity of properties and reactivities exhibited by certain elements. Later, Henri Moseley (England, 1887-1915) established that each elements has a unique atomic number, which is how the current periodic table is organized.

	Group I	Group II	Group III	Group IV	Group V	Group VI	Group VII	Group VIII
Row	R ₂ O	RO	R ₂ O ₃	RO ₂	R ₂ O ₅	RO ₃	R ₂ O ₇	RO4
1	H = 1	28.412.64	建設設計	the local	alter mill			
2	Li = 7	Be = 9.4	B = 11	C = 12	N = 14	O = 16	F = 19	
3	Na = 23	Mg = 24	Al = 27.3	Si = 28	P = 31	S = 32	Cl = 35.5	
4	K = 39	Ca = 40	- = 44	Ti = 48	V = 51	Cr = 52	Mn = 55	Fe = 56, Co = 59, Ni = 59, Cu = 63
5	(Cu = 63)	Zn = 65	-= 68	-= 72	As = 75	Se = 78	Br = 80	
6	Rb = 85	Sr = 87	?Yt = 88	Zr = 90	Nb = 94	Mo = 96	-= 100	Ru = 104, Rh = 104, Pd = 106, Ag = 108
7	(Ag = 108)	Cd = 112	In = 113	Sn = 118	Sb = 122	Te = 125	I = 127	
8	Cs = 133	Ba = 137	?Di = 138	?Ce = 140	ALCONTRACTOR OF THE		Galaxie	
9	Lizeten i		Constitution					
10	202) Augusta Segundaria		?Er = 178	?La = 180	Ta = 182	W = 184		Os = 195, Ir = 197, Pt = 198, Au = 199
11	(Au = 199)	Hg = 200	T1 = 204	Pb = 207	Bi = 208		Stewarts.	
12	Manakited 118		i internet	Th = 231	A	U = 240	Sala Barris	

Dmitri Mendeleev.

Key to the Periodic Table

	I.000794	1	
gas	iigarogen	1	

- Elements are organized on the table according to their atomic number, usually found near the top of the square.
 - The atomic number refers to how many protons an atom of that element has.
 - For instance, hydrogen has 1 proton, so it's atomic number is 1.
 - The atomic number is unique to that element. No two elements have the same atomic number.

What's in a square?

- Different periodic tables can include various bits of information, but usually:
 - atomic number
 - 🗆 symbol
 - 🗆 atomic mass
 - number of valence electrons
 - state of matter at room temperature.

The Periodic Table

• A map of the building block of matter.

	1																	18
1	\mathbf{H} \mathbf{H}	2 IIA				Peri	odio	c Ta	ble				13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	2 He
	1.00797																	4.0026
2	3 Li 6,939	4 Be 9.0122											5 B 10.811	6 C 12.0112	7 N 14,0067	8 O 15,9994	9 F 18,9984	10 Ne 20,179
3	11 Na 22.9898	12 Mg 24.305	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8	9 VIIIB	10	11 IB	12 IIB	13 Al 26.9815	14 Si 28.086	15 P 30.9738	16 S 32.064	17 Cl 35.453	18 Ar 39.948
4	19 K 39.102	20 Ca 40.08	21 S c 44.956	22 Ti 47.90	23 V 50.942	24 Cr 51.996	25 Mn 54.9380	26 Fe 55.847	27 Co 58.9332	28 Ni 58.71	29 Cu 63.54	30 Zn 65.37	31 Ga 65.37	32 Ge 72.59	33 As 74.9216	34 S e 78.96	35 Br 79.909	36 Kr 83.80
5	37 Rb 85.47	38 Sr 87.62	39 Y 88.905	40 Zr 91.22	41 Nb 92.906	42 Mo 95.94	43 Tc [99]	44 Ru 101.07	45 Rh 102.905	46 Pd 106.4	47 Ag 107.870	48 Cd 112.40	49 In 114.82	50 S n 118.69	51 S b 121.75	52 Te 127.60	53 I 126.904	54 Xe 131.30
6	55 Cs 132.905	56 Ba 137.34	57 La 138.91	72 Hf 178.49	73 Ta 180.948	74 W 183.85	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.09	79 Au 196.967	80 Hg 200.59	81 Tl 204.37	82 Pb 207.19	83 Bi 208.980	84 Po [210]	85 At [210]	86 Rn [222]
7	87 Fr [223]	88 Ra [226]	89 Ac [227]	104 Ku [260]	105	106	107	108	109									

Periodic Table Expanded View

The way the periodic table usually seen is a compress view, placing the Lanthanides and actinides at the bottom of the stable.

The Periodic Table can be arrange by subshells. The s-block is Group IA and IIA, the p-block is Group IIIA - VIIIA. The d-block is the transition metals, and the f-block are the Lanthanides and Actinide metals

Periodic Table: The three broad Classes Main, Transition, Rare Earth

Main (Representative), Transition metals, lanthanides and actinides (rare earth)

Copyright @ 2000 Benjamin/Cummings, an imprint of Addison Wesley Longman, Inc.

Reading the Periodic Table: Classification

	Johm	letal	s, M	etal	S,												
Ν	Metalloids, Noble gases 📃 Nonmetals																
	Metals																
IA		Metalloids															VIIIA
1 1													2				
п	IIA												IVA	VA	VIA	VIIA	ne
3	4 Ro		The	netal	s, no	nmet	als, a	nd m	etallo	oids		5 P	6	7 NI	8	9	10 No
LI	De											D	· ·	IN	0	. r	Ne
11 N.a	12 Ma							VIIID				13	14	15 D	16 C	17 C1	18
INA	Mg	IIIB	IVB	VB	VIB	VIIB		VIIIB	_	IB	IIB	AI	51	r	3	u	AI
19 V	20	21	22 T	23 V	24	25	26 E.a	27	28	29 Cm	30 7-	31	32	33	34	35 D.,	36 V.a
N	Ca	SC	п	v	Cr	IVIN	ге	Co	INI	Cu	Zn	Ga	Ge	As	Se	br	Kr
37	38	39	40	41	42	43 T-	44 D	45	46	47	48	49	50	51 C1	52 T-	53	54 V
RD	Sr	Y	Zr	ND	мо	IC	Ku	Kn	Pa	Ag	Ca	In	Sn	50	Ie	1	хе
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	La	HI	la	w	ке	Os	Ir	Pt	Au	Hg	11	Pb	Ві	Po	At	Rn
87	88	89	104	105	106	107	108	109	110	111	112		114		116		118
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub						
	Rare earth elements																
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
	L	anthar	udes	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
	Li	anthar	udes	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
	L	anthar Actir	udes udes	58 Ce 90 Th	59 Pr 91 Pa	60 Nd 92 U	61 Pm 93 Np	62 Sm 94 Pu	63 Eu 95 Am	64 Gd 96 Cm	65 Tb 97 Bk	66 Dy 98 Cf	67 Ho 99 Es	68 Er 100 Fm	69 Tm 101 Md	70 Yb 102 No	71 Lu 103 Lr

Copyright @ 2000 Benjamin/Cummings, an imprint of Addison Wesley Longman, Inc.

Across the Periodic Table

- Periods: Are arranged horizontally across the periodic table (rows 1-7)
- These elements have the same number of valence shells.

Reading the Periodic Table: Categorization

Periods

- Each horizontal row of elements is called a period.
- The elements in a period are not alike in properties.
- In fact, the properties change greatly across even given row.
- The first element in a period is always an extremely active solid. The last element in a period, is always an inactive gas.

Down the Periodic Table

Family: Are arranged vertically down the periodic table (columns or group, 1-18 or 1-8 A,B)
These elements have the same number of <u>electrons in the outer most</u> shells, the valence shell.

Reading the Periodic Table: Categorization

Families

- Columns of elements are called groups or families.
- Elements in each family have similar but not identical properties.
- For example, lithium (Li), sodium (Na), potassium (K), and other members of family IA are all soft, white, shiny metals.
- All elements in a family have the same number of valence electrons.

Reading the Periodic Table: Periodic Patterns

Period

 \Box energy level (subtract for d & f)

A/B Group # total # of valence e⁻

Column within sublevel block # of e⁻ in sublevel

Periodic Patterns

Example - Hydrogen

Periodic Table

e⁻ configuration from the periodic table

	1 IA																	18 VIIIA
1	H $1s^1$	2 IIA	_										13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	He 1s ²
2	Li 2s ¹	Be 2s ²											$B \\ 2p^1$	C 2p ²	N 2p ³	O 2p ⁴	F 2p ⁵	Ne 2p ⁶
3	Na 3s ¹	Mg 3s ²	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8	9 VIIIB	10	11 IB	12 IIB	Al 3p ¹	Si 3p ²	Р 3р ³	S 3p ⁴	Cl 3p ⁵	Ar 3p ⁶
4	K 4s ¹	$Ca 4s^2$	Sc $3d^1$	Ti 3d ²	V 3d ³	Cr 4s ¹ 3d	Mn ⁵ 3d ⁵	Fe 3d ⁶	Co 3d ⁷	Ni 3d ⁸	Cu 4s ¹ 3d ¹⁰	Zn 3d ¹⁰	Ga 4p ¹	Ge 4p ²	As 4p ³	Se 4p ⁴	Be 4p ⁵	Kr 4p ⁶
5	Rb 5s ¹	Sr 5s ²	Y 4d ¹	Zr 4d ²	Nb 4d ³	Mo 5s ¹ 4d	Tc ⁵ 4d ⁵	Ru 4d ⁶	Rh 4d ⁷	Ni 4d ⁸	Ag 5s ¹ 4d ¹⁰	Cd 4d ¹⁰	In 5p ¹	Sn 5p ²	Sb 5p ³	Te 5p ⁴	I 5p ⁵	Xe 5p ⁶
6	Cs 6s ¹	Ba 6s ²	La 5d ¹	Hf 5d ²	Ta 5d ³	W 6s ¹ 5d	Re ⁵ 5d ⁵	Os 5d ⁶	Ir 5d ⁷	Ni 5d ⁸	$\operatorname{Au}_{6\mathrm{s}^15\mathrm{d}^{10}}$	Hg 5d ¹⁰	Tl 6p ¹	Рb 6p ²	Bi 6p ³	Ро 6р ⁴	At 6p ⁵	Rn 6p ⁶
7	Fr 7s ¹	Ra 7s ²	Ac 6d ¹	Rf 6d ²	Db 6d ³	Sg 7s ¹ 6d [:]	Bh 5 6d ⁵	Hs 6d ⁶	Mt 6d ⁷									

Periodic Table: electron behavior

The periodic table can be classified by the behavior of their electrons

Alkali Metals

- They are the most reactive metals.
- They react violently with water.
- Alkali metals are never found as free elements in nature. They are always bonded with another element.

Alkaline Earth Metals

They are never found uncombined in nature.

- They have two valence electrons.
- Alkaline earth metals include magnesium and calcium, among others.

Properties of Metalloids

Silicon

- Metalloids (metal-like) have properties of both metals and non-metals.
- They are solids that can be shiny or dull.
- They conduct heat and electricity better than nonmetals but not as well as metals.
- They are ductile and malleable.

Transition Metals

- Transition Elements include those elements in the B families.
- These are the metals you are probably most familiar: copper, tin, zinc, iron, nickel, gold, and silver.
- They are good conductors of heat and electricity.

Transition Elements

- Transition elements have properties similar to one another and to other metals, but their properties do not fit in with those of any other family.
- Many transition metals combine chemically with oxygen to form compounds called oxides.

Boron Family

- The Boron Family is named after the first element in the family.
- Atoms in this family have 3 valence electrons.
- This family includes a metalloid (boron), and the rest are metals.
- This family includes the most abundant metal in the earth's crust (aluminum).

Properties of Non-Metals

Sulfur

- Non-metals are poor conductors of heat and electricity.
- Non-metals are not ductile or malleable.
- Solid non-metals are brittle and break easily.
- They are dull.
- Many non-metals are gases.

Carbon Family

Atoms of this family have 4 valence electrons.

- This family includes a non-metal (carbon), metalloids, and metals.
- The element carbon is called the "basis of life." There is an entire branch of chemistry devoted to carbon compounds called organic chemistry.

Oxygen Family

- Atoms of this family have 6 valence electrons.
- Most elements in this family share electrons when forming compounds.
- Oxygen is the most abundant element in the earth's crust. It is extremely active and combines with almost all elements.

Halogen Family

- The elements in this family are fluorine, chlorine, bromine, iodine, and astatine.
- Halogens have 7 valence electrons, which explains why they are the most active nonmetals. They are never found free in nature.

Halogen atoms only need to gain 1 electron to fill their outermost energy level. They react with alkali metals to form salts.

Noble Gases

- Noble Gases are colorless gases that are extremely un-reactive.
- One important property of the noble gases is their inactivity. They are inactive because their outermost energy level is full.
- Because they do not readily combine with other elements to form compounds, the noble gases are called inert.
- The family of noble gases includes helium, neon, argon, krypton, xenon, and radon.
- All the noble gases are found in small amounts in the earth's atmosphere.

Rare Earth Elements

- The thirty rare earth elements are composed of the lanthanide and actinide series.
- One element of the lanthanide series and most of the elements in the actinide series are called trans-uranium, which means synthetic or man-made.

Periodic Trends

Electronegativity - a chemical property describing an atom's ability to attract and bind with electrons.

Atomic Radius - a term used to describe the size of the atom. There is no standard definition for this value - it may refer to the ionic radius, covalent radius, metallic radius, or van der Waals radius.

Ionization potential (ionization energy (E_i)) - is qualitatively defined as the minimum amount of energy required to remove the most loosely bound electron, the valence electron, of an isolated neutral gaseous atom to form a cation.

Electron Affinity - the **electron affinity** (E_{ea}) of an atom or molecule is defined as the amount of energy released or spent when an electron is added to a neutral atom or molecule in the gaseous state to form a negative ion.

Melting Point - the amount of energy required to break a bond(s) to change the solid phase of a substance to a liquid.

1. Trend in Electronegativity

- From left to right across a period of elements, electronegativity increases.
- From top to bottom down a group, electronegativity decreases.
- Important exceptions of the above rules include the noble gases, <u>lanthanides</u>, and <u>actinides</u>.
- As for the transition metals, although they have electronegativity values, there is little variance among them across the period and up and down a group.

1 H Hydrogen																	2 He
3 Li Liberte 6.941	4 Be Motion 9.012182											5 B 10.811	6 C 12.0107	7 N 14.00674	8 0 0 15.9994	9 F	4.003 10 Ne 20,1797
11 Na 504mm	12 Mg Magamian 24,3050											13 Al 26.981538	14 Si 28.0855	15 P Photomas 30.973761	16 S	17 Cl 35.4527	18 Ar ^{Arpn} 39.948
19 K Pomanian Va masa	20 Ca 50,078	21 Sc 5000000 44,955910	22 Ti Itanian 47,867	23 V Vanadien 50.0415	24 Cr Chromical 51,9961	25 Mn Manganese 54,938049	26 Fe 55,845	27 Co Cdub 58,933200	28 Ni 38.4934	29 Cu 50007 63,546	30 Zn (5.39	31 Ga Gatan 69,723	32 Ge Gettanian 72,61	33 As Anone 24.92160	34 Se Sciences T8.95	35 Br 59.904	36 Kr 50,000 81,80
37 Rb Rdsdam 85.4678	38 Sr 87.62	39 Y Ynsan 88.90585	40 Zr 200000000 91,224	41 Nb Notian 92,90638	42 Mo 5509554mm 95.94	43 Tc Tocharcian (96)	44 Ru Rathanians 101.07	45 Rh Rhodian 102,90550	46 Pd Palladuae 106.42	47 Ag 58401 107,8682	48 Cd	49 In 114818	50 Sn 118,710	51 Sb Animaty 121,360	52 Te Tehatan 127.60	53 I 126.90447	54 Xe Xee 131.29
55 Cs ^{Contant} 132.90545	56 Ba ^{Bartan} 137.327	57 La Lasthanan 138.9055	72 Hf Holmen 178.49	73 Ta Tatata 180,9479	74 W 183.54	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt Plainam 195.078	79 Au 196.96655	80 Hg Manay 200.59	81 Tl Thalban 204,3833	82 Pb Load 207.2	83 Bi 1600046 208.98038	84 Po (209)	85 At (210)	86 Rn ^{Raden} (222)
87 Fr Passiant (223)	88 Ra ^{Radom} (226)	89 Ac	104 Rf	105 Db Dataina (262)	106 Sg Saborpan (261)	107 Bh adrien (202)	108 Hs Hanium (265)	109 Mt	110	111	112	113	114				

INCREASING ELECTRONEGATIVITY

2. Trend in Atomic Radius

Atomic Radius:

The size of an atomic specie as determined by the boundaries of the valence e-. Largest atomic species are those found in the SW corner since these atoms have the largest n, but the smallest Z_{eff} .

decrease across a period

Copyright @ 2000 Benjamin/Cummings, an imprint of Addison Wesley Longman, Inc.

3. Trend in Ionization Potential

Ionization potential:

The energy required to remove the valence electron from an atomic specie. Largest toward NE corner of PT since these atoms hold on to their valence e- the tightest.

Convicted @ 2000 Banjamin/Cummings, an imprint of Addison Weelay Lon

4. Trend in Electron Affinity

Electron Affinity:

The energy release when an electron is added to an atom. Most favorable toward NE corner of PT since these atoms have a great affinity for e-.

Н -73							He >0
Li	Be	В	C	N	0	F	Ne
-60	>0	27	-122	>0	-141	-328	>0
Na	Mg	Al	Si	Р	S	Cl	Ar
53	>0	-43	-134	-72	-200	-349	>0
K	Ca	Ga	Ge	As	Se	Br	Kr
-48	-4	30	-119	78	195	325	>0
Rb	Sr	In	Sn	Sb	Te	I	Xe
-47	-11	30	-107	-103	-190	-295	>0
1A	2A	 ЗA	4A	5A	6A	7A	8A

5. Trend in Melting point

Melting points are varied and do not generally form a distinguishable trend across the periodic table. However, certain conclusions can be drawn from the graph below.

- □ Metals generally possess a high melting point.
- □ Most non-metals possess low melting points.
- The non-metal carbon possesses the highest boiling point of all the elements. The semi-metal boron also possesses a high melting point.

Summary of Trend

Periodic Table and Periodic Trends

Ionization Energy: Largest toward NE of PT Electron Affinity: Most favorable NE of PT

Atomic Radius: Largest toward SW corner of PT